
Introduction to Programming 
 

Welcome to the Course! 

Sergey Shershakov 

 
#1/10 Jan 2019 



Lecturer 
 

Sergey Shershakov 
 

 

 

Research Fellow @ PAISLab FCS HSE 

Senior Instructor @ SSE FCS HSE 

 

 

 https://www.hse.ru/en/staff/sshershakov 

 sshershakov@hse.ru 

 @bjolyk 

  Office 419 

 by appointment 

  

2 

Drop me a line whenever you have questions or even if you just want to talk! 

mailto:sshershakov@hse.ru
mailto:sshershakov@hse.ru
mailto:sshershakov@hse.ru
mailto:sshershakov@hse.ru


The Team 

3 

TODO 
Sergey Shershakov George Piatsky Kirill Rudakov  Andrey Tatarnikov  

Michael Diskin  Ilya Kostyuchenko  George Marshalko 



COURSE GENERAL INFORMATION 

There is simply no substitute for hard work 
when it comes to achieving success. 

4 



What is Introduction to Programming-2? 

• Learn how to write powerful and elegant code in 
C++. 

• Problem solving oriented course with a lot of 
practical tasks. 

• Based on the “classical” C++ but involving modern 
standards features. 

• Incorporating basic data structures and algorithms — 
bridge to the 4th module. 

5 

ХРНЧК 



Why Learn C++? 

• Popularity. 

• Multi-Paradigmatic High-Level Language. 

• Extremely Powerful (and Dangerous — Isn’t it 
intriguing?) 

• Influenced the creation of a family of C++-styled 
programming languages such as Java, C#, … 

– excellent choice to be a first deeply studied language. 

6 



Why Learn C++? — TIOBE Index 

7 

Long Tem History 

https://www.tiobe.com/tiobe-index/  

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/


Why C++: Companies 

8 



Why C++: Software 

9 

TO
D
O 



Logistics: Timetable 

10 

 TODO 



Logistics: Ongoing Activity and 
Assignments 

11 

• Working during practical classes. 

• Solving problems by developing programs: 

– small and a few of large ones; 

– submitting to Я.Контест. 

• Writing in-class tests. 

 

 

 

Gives you points that constitute OA grade! 



Logistics: Grading Details 

12 

The final grade 𝑃2 for this part of the whole course: 

 
𝑃2 = 0.4 ∙ 𝐸2 + 0.6 ∙ 𝑂𝐴 

 

The ultimate grade for the whole course: 

 
𝐺 = 0.7 ∙ min 𝑃1, 𝑃2 + 0.3 ∙ max⁡(𝑃1, 𝑃2) 



Logistics 

13 

Course Homepage: 
 http://wiki.cs.hse.ru/Introduction_to_programming_2  

Telegram Channel (for announcements): 
 https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow  

Telegram Group (for discussions): 
 https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w  

Lateness Policy: No late work will be accepted 

Honor Code: Do not cheat, repercussions are severe! 

 

http://wiki.cs.hse.ru/Introduction_to_programming_2
http://wiki.cs.hse.ru/Introduction_to_programming_2
http://wiki.cs.hse.ru/Introduction_to_programming_2
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow
https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w
https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w
https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w


Development 

14 

• You may use any setting of OS/Compiler/IDE/Editor/Debugger 

• We refer to: 

– C++11 Standard implemented by gcc (ver. 4.8.1+) 
• MinGW ver. 8.1 port for gcc for Window is OK; 

– CMake as a (meta-)building system; 

– Qt Creator as a powerful minimalistic free IDE 
• CLion, CodeBlocks, MS VS are also OK, but on your own risk!  

 

• You are strongly advised to bring your own laptop for all 
practical classes and especially control tests! 

 

 

TODO 



C++ HISTORY 

15 



Assembly Code 

section   .text 

global  _start   ;must be declared for linker (ld) 

 

_start:   ;tell linker entry point 

 mov edx,len   ;message length 

 mov ecx,msg   ;message to write 

 mov ebx, 1  ;file descriptor (stdout) 

 mov eax, 4  ;system call number (sys_write) 

 int  0x80  ;call kernel 

 mov eax, 1  ;system call number (sys_exit) 

 int  0x80  ;call kernel 

 

section .data 

msg db 'Hello, world!',0xA   ;our dear string 

len equ $ - msg   ;length of our dear string 

 

16 



Assembly Code 

• Simple instructions 

• Extremely fast (if written properly) 

• Gives one complete control over your program 

 

Why don’t we always use assembly? 
• Requires lots of code to do simple tasks. 

• Hard to understand other people’s code. 

• Extremely unportable. 

17 



High-level program 

• The idea is: 

– to write a program in a more intuitive language, 
mostly platform-independent 

– to translate the program into the low-level form 
that is appropriate to the CPU 

18 



C 

• The C Programming 
Language: 

– created in 1972 

– fast, simple, cross-platform 

– the most used programming 
language so far 

 

19 

Ken Thompson and Dennis Ritchie 

• Some weakness: 
– No  objects or classes 

– Difficult to write code that worked generically 

– Tedious when writing large programs 



Bjarne Stroustrup and C++ 

• The first version of C++ was created as an 
extension of C “with classes” 

• It was designed to: 

–  be fast 

–  be simple to use 

–  be cross-platform 

–  have high-level features 

20 



C++ developers 

21 



Evolution of C++ 

22 

1979 1983 1998 2003 2011 2014 2017 

C with 
classes 

C++ 

C++98 

C++03 

C++11 

C++14 

C++17 



Philosophy 
• It must be driven by actual problems and its features should be 

useful immediately in real world programs. 
• Programmers should be free to choose their own style. 
• Allowing a useful feature is more important than preventing every 

possible misuse of C++. 
• No implicit violations of the type system. 
• User-created types need to have the same support and 

performance as built-in types. 
• Unused features should not negatively impact created executables. 
• Enforce safety at compile time whenever possible. 

 
• The Zero Overhead Principle:  

– «What  you  don’t  use,  you  don’t  pay  for» 
– «What  you  do  use, you couldn’t hand code any better» 

23 



BUILD YOU FIRST PROGRAM! 
Targets and Building 

24 



Application Development Lifecycle 

25 

TODO 

Artifacts 



Targets 

• Calculator — stand-alone executable 

• Media Player — pluggable app: 

– MP Framework — individual app 

– MP3 Plugin (shared lib, dll) 

– AVI Plugin (shared lib, dll) 

– … 

26 



Targets: Applications and Libraries 

• Application — normally stand-alone executable (binary) file 
• Library — contains common piece of compiled code (can 

also be given in the form of SC) 
– Static Library — is to be connected to an app during linking 

stage (compile time) 
– Shared (Dynamic) Library — is to be connected to an app during 

its run (runtime) 

 
• Normally each target consists of a number of units. Each 

unit contains code related to some specific problem. 
– In source code a unit is represented by one or more source files 

27 



Interface and Implementation 

Interface: 

• declare smth w/o defining 
any specific way to 
implement this; 

• specify a contract between 
two different parts; 

Implementation: 

• carry out exactly what an 
interface declares; 

• there can be a number of 
ways to implement the 
same interface and, hence, 
satisfy the contract; 

29 



Interface and Implementation in C++ 

Interface: 

• declare a prototype of a 
function; 

• create a new type; 

 

• declare a class with pure 
virtual functions — an 
interface class; 

 

• often represented by 
header files (.h, .hpp) 

Implementation: 

• implement a function by 
writing its body; 

• create a new object of a 
specific type; 

• inherit the interface class 
and override virtual 
functions; 

 

• often represented by 
translation units (.cpp) 

 

30 



Translation Unit 

• Translation Unit is a text file with a program in 
C++, named normally with .cpp extension, 
that can be compiled by a C++-compiler. 

 

• Header Files (.h, .hpp, …) are not translation 
units and, hence, cannot be compiled. 

DO NOT EVENT TRY to compile header files! 

31 



Building Stages 

32 

C++ compiler

C++ preprocessor

main.cpp
module

foo.cpp
module

bar.cpp
module

point.cpp
module

main.h rect.h point.h

iostream

main.lst foo.lst bar.lst point.lst

main.o foo.o bar.o point.o

Linker system libraries, CRT (.a)

hello.exe


