HIGHER SCHOOL OF ECONOMICS
NATIONAL RESEARCH UNIVERSITY

Introduction to Programming

Welcome to the Course!

#1/10 Jan 2019

Lecturer

Sergey Shershakov

Research Fellow @ PAISLab FCS HSE (® https://www.hse.ru/en/staff/sshershakov
, [=] sshershakov@hse.ru
Senior Instructor @ SSE FCS HSE © @biolyk
E Office 419

by appointment

Drop me a line whenever you have questions or even if you just want to talk!

mailto:sshershakov@hse.ru
mailto:sshershakov@hse.ru
mailto:sshershakov@hse.ru
mailto:sshershakov@hse.ru

The Team

Sergey Shershakov George Piatsky Kirill Rudakov Andrey Tatarnikov

Michael Diskin llya Kostyuchenko George Marshalko .

COURSE GENERAL INFORMATION

What is Introduction to Programming-2?

Learn how to write powerful and elegant code in
C++.

Problem solving oriented course with a lot of
practical tasks.

|II

Based on the “classical” C++ but involving modern

standards features.

Incorporating basic data structures and algorithms —
bridge to the 4t module.

Why Learn C++?

Popularity.
Multi-Paradigmatic High-Level Language.

Extremely Powerful (and Dangerous — Isn’t it
intriguing?)

Influenced the creation of a family of C++-styled
programming languages such as Java, CH, ...

— excellent choice to be a first deeply studied language.

Why Learn C++? — TIOBE Index

Programming Language
Java

C

C++

Python

https://www.tiobe.com/tiobe-index/

Long Tem History

20138

1

2

3

4

2014

2

1

4

7

2009

1

2

3

5

2004

1

2

3

10

1899 1854 1989
14

1 1 1

2 2 3

20 21

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Why C++: Companies

amazon facebook
Google
== Microsoft Sl HAeKC

N

Adobe

« lll

Why C++: Software

¥ W ORLD W

 WARCRAFT

MSK

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

Logistics: Timetable

cp urt

0 =«

nr

11

Cb

12

BC

13

MH

14

BT

Wsh.1 (183-1)
10:30-11:50
r. 605

Wsh.1(183-2)
12:10-13:30
r. 605

Lecture-1
13:40-15:00
r. 509

Wsh.1 (182-2)
15:10-16:30
r. 432

Wsh.1 (182-1)
16:40-18:00
r. 432

Series 1

Wsh.1(181-1)
09:00-10:20
r 412

Wsh.2 (183-1)
10:30-11:50
r. 420

Lecture-2
12:10-13:30
r. 509

Wsh.2 (1§ Wsh.2
13:40-15 13:40-15
r. 432 r. 420

Wsh.2 (182-2)
15:10-16:30
r. 432

Serles 2

10

Logistics: Ongoing Activity and
Assignments

* Working during practical classes.
* Solving problems by developing programs:

— small and a few of large ones;
— submitting to A.KoHTecT.

!

Gives you points that constitute OA grade!

* Writing in-class tests.

Logistics: Grading Details

The final grade P, for this part of the whole course:
P, =04-E,+0.6-0A

The ultimate grade for the whole course:

G = 0.7 -min(Py, P,) + 0.3 - max(Py, P,)

Logistics

Course Homepage:
http://wiki.cs.hse.ru/Introduction to programming 2

Telegram Channel (for announcements):
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow

Telegram Group (for discussions):
https://t.me/joinchat/DNg14VSd oaqlyGQrdXby4w

Lateness Policy: No late work will be accepted

Honor Code: Do not cheat, repercussions are severe!

13

http://wiki.cs.hse.ru/Introduction_to_programming_2
http://wiki.cs.hse.ru/Introduction_to_programming_2
http://wiki.cs.hse.ru/Introduction_to_programming_2
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow
https://t.me/joinchat/AAAAAEhINr5SweyzcOrxow
https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w
https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w
https://t.me/joinchat/DNq14VSd_oqlyGQrdXby4w

Development

* You may use any setting of OS/Compiler/IDE/Editor/Debugger
 We refer to:

— C++11 Standard implemented by gcc (ver. 4.8.1+)
* MinGW ver. 8.1 port for gcc for Window is OK;

— CMake as a (meta-)building system;

— Qt Creator as a powerful minimalistic free IDE
e CLion, CodeBlocks, MS VS are also OK, but on your own risk!

* You are strongly advised to bring your own laptop for all
practical classes and especially control tests!

C++ HISTORY

Assembly Code

section .text
global _start ;must be declared for linker (1d)
_start: ;tell linker entry point
mov edx,len ;message length
mov ecx,msg s;message to write
mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys write)
int ©0x80 ;call kernel
mov eax, 1 ;system call number (sys exit)
int 0x80 ;call kernel

section .data
msg db 'Hello, world!',oxA ;our dear string
len equ $ - msg ;length of our dear string

Assembly Code

* Simple instructions
* Extremely fast (if written properly)
* Gives one complete control over your program

Why don’t we always use assembly?
* Requires lots of code to do simple tasks.
 Hard to understand other people’s code.
 Extremely unportable.

High-level program

e The idea is:

— to write a program in a more intuitive language,
mostly platform-independent

— to translate the program into the low-level form
that is appropriate to the CPU

* The C Programming
Language:
— created in 1972
— fast, simple, cross-platform

— the most used programming
language so far

Ken Thompson and Dennis Ritchie

 Some weakness:
— No objects or classes
— Difficult to write code that worked generically

— Tedious when writing large programs

19

Bjarne Stroustrup and C++

e The first version of C++ was created as an
extension of C “with classes”

* |t was designed to:
— be fast
— be simple to use
— be cross-platform
— have high-level features

20

C++ developers

21

Evolution of C++

C with
C++98 C++11 C++17

classes
1979 1983 1998 2003 2011 2014 2017

C++ C++03 C++14

22

Philosophy

It must be driven by actual problems and its features should be
useful immediately in real world programs.

Programmers should be free to choose their own style.

Allowing a useful feature is more important than preventing every
possible misuse of C++.

No implicit violations of the type system.

User-created types need to have the same support and
performance as built-in types.

Unused features should not negatively impact created executables.
Enforce safety at compile time whenever possible.

The Zero Overhead Principle:
— «What you don’t use, you don’t pay for»
— «What you do use, you couldn’t hand code any better»

23

BUILD YOU FIRST PROGRAM!

Application Development Lifecycle

- Testing |

Artifacts

25

Targets

e Calculator — stand-alone executable

* Media Player — pluggable app:
— MP Framework — individual app
— MP3 Plugin (shared lib, dll)
— AVI Plugin (shared lib, dll)

Targets: Applications and Libraries

Application — normally stand-alone executable (binary) file

Library — contains common piece of compiled code (can
also be given in the form of SC)

— Static Library — is to be connected to an app during linking
stage (compile time)

— Shared (Dynamic) Library — is to be connected to an app during
its run (runtime)

Normally each target consists of a number of units. Each
unit contains code related to some specific problem.

— In source code a unit is represented by one or more source files

Interface and Implementation

Interface: Implementation:

* declare smth w/o defining e carry out exactly what an
any specific way to interface declares;
implement this; * there can be a number of

» specify a contract between ways to implement the
two different parts; same interface and, hence,

satisfy the contract;

Interface and Implementation in C++

Interface:
declare a prototype of a .
function;
create a new type; .

declare a class with pure
virtual functions — an
interface class;

often represented by
header files (.h, .hpp)

Implementation:

implement a function by
writing its body;

create a new object of a
specific type;

inherit the interface class
and override virtual
functions;

often represented by
translation units (.cpp)

Translation Unit

* Translation Unit is a text file with a program in
C++, named normally with extension,
that can be compiled by a C++-compiler.

* Header Files (.h, .hpp, ...) are not translation
units and, hence, cannot be compiled.

DO NOT EVENT TRY to compile header files!

Building Stages

H[iostream

B

J

main.h] 4>[rect.h] [point.h
main.cpp | | foo.cpp bar.cpp point.cpp
module module module module
o - . _ C++ preprocessor
main.Ist foo.lst bar.|st point.Ist
- - - - C++ compiler
main.o foo.o bar.o point.o

Linker

\<\ /

[hello.exe]

system libraries, CRT (.a)

32

