HIGHER SCHOOL OF ECONOMICS @
NATIONAL RESEARCH UNIVERSITY

Introduction to Programming

From Structures to Classes

#8, #9/5, 7 Feb 2019

On the Intermediate Test

* A big “Kontrolyanya Rabota” is planned during the week
beginning on Feb 18 (Feb 19 or Feb 21)

e Duration is 1 class (2 ac. units)

* A personal laptop is needed:

— for those who are not able to bring their own, a computer class will be
booked;

— we need to count heads (there will be a poll).

3 -fnc-c-c,

b naTtbli goneoc. J|

£

o

5 /
4

et's Go to the Cinema!

/IS((Z,/
Screy/n (;Z)’Z/)

1151?1615141312}/{1[]93?6543211
sIM1E1ZIT] 2 Jagged
s|[a][3][2][1] 2 2 Array

42322212!]19151??|15141312111!]9B}'5543214

2 |22||21||20((19({1B||17||16||15||14 || 134412 || 11 || 10([9

3 [23][22][21][20][19][18][17]]1s 15E|13 12][11][10][9

5 |20((19|{18)17 ||16([15 (|14 (|13 |12 (|11 (|10{| 9 || 8|17 || &6 |[S| 4|3 ||2]|[1

6 |13 ||12|[11(|10(|9 || 8 || 7 ||6||5||4||/3||2|/ 1|6

7 (9||8|[7]|e]|ls]||a][3] 2][t] 7

1) input data: m rows, n. seats for each i-th row; 1 — the seat is sold, 0 — the seat
is free;

2) print data in a different format: a row per line, * is for sold seats, . is for free;
sold/total ratio in the end of each row/line;

3) someone would like to buy k adjacent seats in the same row; one needs to
determine whether it is possible or not;

4) how to modify the printing method for highlighting the free k seats by using
O notation?

The std: :pair Utility Class

e Simple structure representing a pair of objects that can have a
different type

std: :pair<Typel, Type2>

pair<int, int> a(10, 20);)
a.first == 10; 61’ Z——:ngl/ gﬁg%i::;)
Hrud-

a.second == 20;

return {7, freeCol};
return std::imake_pair(7, freelol);
return std::pair<int, int>(7, freelol);

http://www.cplusplus.com/reference/utility/pair/pair/
https://en.cppreference.com/w/cpp/utility/pair

http://www.cplusplus.com/reference/utility/pair/pair/
http://www.cplusplus.com/reference/utility/pair/pair/
https://en.cppreference.com/w/cpp/utility/pair
https://en.cppreference.com/w/cpp/utility/pair

UML Sequence Diagram of CaIIing Functions

INTRODUCTION TO OOP

Vector2d Structure

— fv_w‘-wa, L\

\
\/\4/&/ \,\ , (/{\ O B vectorzdh® ¥ | x| <Select Symbol>
11« /x! \file vector2d.h
2 * Definition of the structure Vector2d.
3 * /
il
5 #ifndef VECTOR2D_H
CQ 6 #define VECTOR2D _H
e LA
9l 4« struct Vector2d
10] {
11 double x;
12 double vy;
13 s
14
15

16 #endif // VECTOR2D_H

17 44)

Passing-through of an Object by Reference

int main()

Vector2d vl
Vector2d v2

12, 3};
13, 4};

multByScalar(vi, 10);
Vector2d v3 = multByScalarEnh(v2, 10);

an

AJ om,xgﬁvl%{

AETE8)

T . _ __—
~ e T 21

Output Vector2d to a Stream

. = M . " I I »
o ‘ std::cout << "vl: " << vl << '"\n';
FiZHS5EVtraining\DSBA\programmingiprogramshlecture@8\src\ex_2\ex_2.cpp:28:28: note: cannot convert
'vi' (type 'Vector2d') to type 'const std::error_code&'
stdiicout << "wl: " << w1l << '\n';:

Y

* One needs to “teach” the compiler how to output objects of a
custom type:

— overload operator<< forthe std::ostream type:

std: :ostream& (std: :ostream& s, const Vector2d& v)
{

s << '"(' << y,x << ", " << v,y << 'j';

return s;

¥

« Why do we need to return the stream? why it is by reference?

9

Problem: Calculations of a Vector's Length

« We don't want to recalculate a vector's length until its coordinates, x and
y, are not changed

— cache the length value as a separate field;
— treat a negative value as a sign that no length has been calculated previously;

struct Vector2d double (fxcoﬂst * /Vector2d& v)
{ {
double x; // 1f the value has not been calculated previously
double vy; if(v.length < 0)
v.length = sgrt(v.x * v.X + Vv.y * V.y);
double ;
}: return v.length;

* Possible problems:
— how to initialize the Length field before the very first use?
— how to guarantee that 1ength value will be invalidated when either x or y is changed?

Putting Data and Behavior Together

?truct Vector2d /determines the state of an object

double x;
double y;

double length;
Fs

rmines the behavior of an ob:/ect

Vector2d& multByScalarEnh(Vector2d& v, double z);

void multByScalar(Vector2d& v, double z);

double calcLength(/*const x/Vector2d& v);

 Vector2d is passed as a parameter, v, to all of these methods;

— combine them together in a more natural way!

N

11

Putting Data and Behavior Together

struct Vector2d

{
//----< Fields >----

double x;

double vy;

double length; [/ /< Stores the «
//———< Methods >-———-

void multByScalar(/+«Vector2d& v, =/ double z); ///< Multiplicat
Vector2d& multByScalarEnh(/+«Vector2d& v, */ double z); ///< Enhanced mu
double calcLength(/+Vector2d& v«/); ///< Length calc

}; // struct Vector2d

N .

Putting Data and Behavior Together

struct Vector2d

{
//----< Fields >--—-

double x;

double vy;

double length; ///< Stores the cached va
//————< Methods >———-

void multByScalar (double z); ///< Multiplication.
Vector2d& multByScalarEnh(double z); ///< Enhanced multiplicat
double calcLength(); ///< Length calculation.

}; // struct Vector2d

N .

N

How to Implement Methods of a Structure?

void Vector2d::multByScalar(/+x Vector2d& v, =/ double z)
1

[* v.kx[X x= Z;

[* v.x/[Y k= Z;

L

double Vector2d::calcLength(/*x Vector2d& v /)
{

// 1T the value has not been calculated previously...
if(/*v.x/length < @)

[*v.x/length = sqrt(/*v.x/x * [*xv.x/Xx + [*v.*x/y * [*xv.x/y);

return /*xv.x/length;

Here Vector2d defines a scope of the structure and :
scope operator.

- is the

15

How to Implement Methods of a Structure?

There is no need to provide a name of the current object — it is implied

implicitly! P £ Y
void Vectoer::multByScalar(Eg:;ie Z) /
1

X *= Z;
Yy *= Z;
H

double Vector2d::calcLength()
{

// 1T the value has not been calculated previously...
if(length < ®)
length = sgrt(x * x + vy % y);

return length;

16

How to Implement Methods of a Structure?

Now, how to return an object in the method multByScalarEnh()?

void Vector2d: :multByScalar (double z)

y *= Z;

s

double Vector2d::calcLength()
{

J/ if the value has not been calculated previously...
if(length < 0)
length = sgrt(x * x + v * y);

return length; L/théggxkéz? L,?
: \~

Vector2d& Vector2d: :multByScalarEnh(double z)

{
X *= Z;
y *= Z;
return [EIOREY];
}

By using the this keyword!

18

this Keyword

* Represents a pointer! to the current object, which is called

instance.
* Can be used when the explicit referencing of the instance is
needed.
int main() \/'{ TZ 77 6)

{

Vector2d vl = {2, 3, 0}; FFoo
Vector2d v2 ;

vl.multByScalar(10); K"LI/\/;S }\8(vi_

2.multByScal 10); —— 1
v2.multByScalar(10); [‘M{)/
=£ 10 V-
= void Vector2d::multByScalar (double z)
!
\/(l\\ 6\,\1 \ ® /* X[X *= Z;
T f"’* th—iS—} ‘KJ{’ }" * = Z;

¥] (19
B 1 a pointer is a holder for an address L 2N

The this Keyword

 The keyword this can be used in an implicit context as well,
but it is redundant!

— unlike Python, where similar self keyword is a must.

 Therule: never use this keyword unless it really becomes
necessary!

void Vector2d::multByScalar(double z)

pretty OK!

correct, but
redundant!

How to Obtain an Object from a Pointer?

Veefo, Za@ {5\1 ;
Vector2d& Vector2d: :multByScalarEnh(double J%<:“‘—————\\A

{

*

X Z;
y *= Zj

return (xthis);

Vector2d& Vector2d: :multByScalarEnh(double z)

{
Vector2d& curInsta = *this;
curlnsta.x %= z;
curInsta.y x= z;
return curlnsta;
ks

* here is the dereference operator
— do not mix it with the multiplication operator, which has the same symbol.

\ :

The Problem of Data Inconsistency

double Vector2d::calcLength()

{
J/ if the value has not been calculated previously...
f(lenzth < o)
lengthl = sqgrt(x = x + y * y);
return Lengthj;
}
int main() int main()
{ &
Vector2ad vl = {2, 3, [&}; \,> Vector2d v1 = {2, 3, Bil};
Vector2d v2 = {3, 4, &}; Vector2d v2 = {3, 4, Fi};
)\
X } Y {A/L) (
dJ
double 11 = vl.calclLength(); Dj\ H
double 12 = v2.calcLength(); //7 o
v2.x = 10; _—
double = v2.calcLength(); // here 11 2 ==[5) which is incorrect

22

The Problem of Data Inconsistency

double Vector2d::calcLength()
1

[/ df the value has not been calculated previously, o

Two possible solutions:

1) prohibit changing x and y;

2) changing x or y must invalidate the value of length.

int main
{ = T
Vector2d vl = {2, 3, [0}; 9 Vector2d vl = {2, 3, jl};
Vector2d v2 = {3, 4, [}; Vector2d v2 = {3, 4, @i};
2
X) K% {A/L) (
dJ
double 11 = vl.calcLength(); ’Dj\ L‘
double 12 = v2.calcLength(); /_/? o

v2.x = 10; ——

double = v2.calcLength(); // here 11 2 ==[5) which is incorrect

23

ENCAPSULATION

Make all Fields Inaccessible from the Outside of the Structure

Step 2: Put public part of the

Step 1: Add Class Access class (interface) to the top of

Modifiers .
f the declaration
struct Vector2d struct Vector2d
1 {
‘brivate: r public:
J/————< Fields »>-4-- ‘\ C&Lu}A”é/ //————< Methods »>———- '
™ st
double x; c 4%)5/ void multByScalar (double z);
double vy; Vector2d& multByScalarEnh(double z);
double length; double calcLength();
public: private:
//———-< Methods >-———- //-———< Fields >-———-
void multByScalar (double z) double x;
Vector2d& multByScalarEnh(ble z), double vy;
p,‘dyub e calcLength(); ‘ double length;
[L }; // struct Vector2d

}; // struct Vector2d W
vl b =
e aam) :

Make all Fields Inaccessible from the Outside of the Structure

Step 2: Put public part of the Step 3: According to the Code
class (interface) to the top of Style Rules, all non-public fields
the declaration are named with
struct Vector2d struct Vector2d
1 {
public: public:
//————< Methods >--—- //-——-< Methods >----
void multByScalar(double z); void multByScalar(double z);
Vector2d& multByScalarEnh(double z); Vector2d& multByScalarEnh(double z);
double calcLength(); double calcLength();
private: private: .
//----< Fields >---- [/-===< Fields >-——-
double x; double [Bx;
double vy; double Hy;
double @length;

double lengthj;

}; // struct Vector2d }5 // struct Vector2d

\ .

Access Control: Class Access Modifiers

* The access to the members of a structure (or class) is controlled by using Class

Access Modifiers:

— private identifies structure/class members that are only directly accessibly inside a

structure/class;
* serves as a structure/class implementation part;

— public identifies structure/class members that are accessible from both inside and

outside of the structure/class;

* such members constitute the public interface for a structure/class (its abstraction);

* The public members of a structure/class act as an intermediary between a

program and the structure/class private members.

User of a structure/class

RN

public interface
i

private Implementation

olatt /

27

Encapsulation and Data Hiding

* Encapsulation is gathering the implementation details
together and separating them from the abstraction.

* Data hiding (putting data into the private section of a class) is

an instance of encapsulation, and so is hiding functional
details of an implementation in the private section.

public interface:
public methods (functions)

private implementation:
private fields and methods

and (very rarely) public fields (variables)

28

How to Initialize a Structure Now?

struct Vector2d 2 ,_C@%g(ﬂ'\ = - X/ S
1
public: /ég{////////////

/=== M?j;?dﬁyi___ int main()

Dgo/»f((/ {
void multByScalar(double z); m
Vector2d& multByScalarEnh(double z);

Vector2d v2 =

double calcLength();

private:
J//———< Fields >-——-

double _x;

double _y; . .
double _length; Fields are not accessible
}; // struct Vector2d anymore!

D

Initialize the Structure by Using a Constructor Met
Verkon 2406 F1)g <fw

Vector2d: :Vector2d()

struct Vector2d

{
public:
//-———-< Methgls >--——-

Vector2d();
Vector2d(déuble x

double calcLength()\;

private:
//-————< Fields >--—-

double _Xx;
double _y; 1
double _length;

¥; // struct Vector2d

Vo ijé% e o b conates s

\ .

Structure/Class Constructor

* A constructor is a special method (function) of a class that is called
automatically when an object of the class is being created;

has exactly the same name as the class;
» for aclass Foo its constructor is Foo: : Foo();

can have different parameters:
 the constructor with no parameters is the default constructor: Foo: :Foo();

e aconstructor with arbitrary parameters is one of the possible initialization
constructors: Foo: :Foo(int a);

* there are also a few constructors with special meanings: the copy constructor, the
move constructor;

has no return value: (/

. Foo()

~—Fe0o~ Foo0::Foo() ‘>(
« _void Foo::Foo() X

% Foo: :Foo()

31

The Member Initializer List

 The member initializer list consists of a comma-separated list of initializers
preceded by a colon.

* Must be used in order to initialize member fields instead of re-assigning

their values: %VC Azaq{%

MC('—'X~

J
Vector2d: :Vector2d() Vector2d::Vector2d(Mﬁ/
: x(®@) , _y(@) , _length(-1)
k - 0 { /\/[
J““_ 3 /] x = 0
_y = 0; /]y = 0 /
_length = -1; J !/ :length = -1;
1V }
Y.
Vector2d: :Vector2d(double x, doubl 4 % Vector2d: :Vectord(doublg x, double y)
{ b % X (¥ X)
Z - y _y(y)
) "" , _length(-1)
- 47 \ .
/] _x = X
¥ o ‘ /] -y = ¥;
Aaah! This is why he P // _length = -1;
asks you putting the }

opening bracket to a
new line!

32

What Is the Difference Between the Structures and the Classes?

Structure Class
* is acustom datatype * is acustom datatype
e declared with struct e declared with class
keyword keyword
* all members are public by * all members are private by
default default

no. more. difference.

s e~ CJIABAKIICC 33

