
Introduction to Programming

From Structures to Classes

Sergey Shershakov

#8, #9/5, 7 Feb 2019

On the Intermediate Test

• A big “Kontrolyanya Rabota” is planned during the week
beginning on Feb 18 (Feb 19 or Feb 21)

• Duration is 1 class (2 ac. units)

• A personal laptop is needed:
– for those who are not able to bring their own, a computer class will be

booked;

– we need to count heads (there will be a poll).

2

Let's Go to the Cinema!

1) input data: m rows, ni seats for each i-th row; 1 — the seat is sold, 0 — the seat
is free;

2) print data in a different format: a row per line, * is for sold seats, . is for free;
sold/total ratio in the end of each row/line;

3) someone would like to buy k adjacent seats in the same row; one needs to
determine whether it is possible or not;

4) how to modify the printing method for highlighting the free k seats by using
"XXXX" notation?

3

Jagged
Array

Screen

The std::pair Utility Class

• Simple structure representing a pair of objects that can have a
different type

std::pair<Type1, Type2>

pair<int, int> a(10, 20);

a.first == 10;

a.second == 20;

4
http://www.cplusplus.com/reference/utility/pair/pair/
https://en.cppreference.com/w/cpp/utility/pair

http://www.cplusplus.com/reference/utility/pair/pair/
http://www.cplusplus.com/reference/utility/pair/pair/
https://en.cppreference.com/w/cpp/utility/pair
https://en.cppreference.com/w/cpp/utility/pair

UML Sequence Diagram of Calling Functions

5

TODO

INTRODUCTION TO OOP

6

Vector2d Structure

7

Passing-through of an Object by Reference

8

Output Vector2d to a Stream

9

• One needs to “teach” the compiler how to output objects of a
custom type:
– overload operator<< for the std::ostream type:

• Why do we need to return the stream? why it is by reference?

Problem: Calculations of a Vector's Length

• We don't want to recalculate a vector's length until its coordinates, x and
y, are not changed

– cache the length value as a separate field;

– treat a negative value as a sign that no length has been calculated previously;

10

• Possible problems:
– how to initialize the length field before the very first use?

– how to guarantee that length value will be invalidated when either x or y is changed?

Putting Data and Behavior Together

11

determines the state of an object

determines the behavior of an object

• Vector2d is passed as a parameter, v, to all of these methods;
– combine them together in a more natural way!

Putting Data and Behavior Together

12

Putting Data and Behavior Together

13

How to Implement Methods of a Structure?

• Where to put? — …..

15

• Here Vector2d defines a scope of the structure and :: is the
scope operator.

How to Implement Methods of a Structure?

• There is no need to provide a name of the current object — it is implied
implicitly!

16

How to Implement Methods of a Structure?

• Now, how to return an object in the method multByScalarEnh()?

18

• By using the this keyword!

this Keyword

• Represents a pointer1 to the current object, which is called
instance.

• Can be used when the explicit referencing of the instance is
needed.

19
1 a pointer is a holder for an address

The this Keyword

• The keyword this can be used in an implicit context as well,
but it is redundant!
– unlike Python, where similar self keyword is a must.

• The rule: never use this keyword unless it really becomes
necessary!

pretty OK!

correct, but
redundant!

How to Obtain an Object from a Pointer?

21

* here is the dereference operator
– do not mix it with the multiplication operator, which has the same symbol.

The Problem of Data Inconsistency

22

The Problem of Data Inconsistency

23

Two possible solutions:

1) prohibit changing x and y;
2) changing x or y must invalidate the value of length.

ENCAPSULATION
Object-oriented approach

24

Make all Fields Inaccessible from the Outside of the Structure

25

Step 1: Add Class Access
Modifiers

Step 2: Put public part of the
class (interface) to the top of

the declaration

Make all Fields Inaccessible from the Outside of the Structure

26

Step 2: Put public part of the
class (interface) to the top of

the declaration

Step 3: According to the Code
Style Rules, all non-public fields

are named with _

Access Control: Class Access Modifiers

• The access to the members of a structure (or class) is controlled by using Class
Access Modifiers:

– private identifies structure/class members that are only directly accessibly inside a
structure/class;

• serves as a structure/class implementation part;

– public identifies structure/class members that are accessible from both inside and
outside of the structure/class;

• such members constitute the public interface for a structure/class (its abstraction);

• The public members of a structure/class act as an intermediary between a
program and the structure/class private members.

27
private Implementation

public interface

User of a structure/class

Encapsulation and Data Hiding

• Encapsulation is gathering the implementation details
together and separating them from the abstraction.

• Data hiding (putting data into the private section of a class) is
an instance of encapsulation, and so is hiding functional
details of an implementation in the private section.

28

public interface:
 public methods (functions)

 and (very rarely) public fields (variables)

private implementation:
 private fields and methods

How to Initialize a Structure Now?

29

Fields are not accessible
anymore!

We need to create a special public (interface) method which
makes all the work for us!

Initialize the Structure by Using a Constructor Method

30

Default Constructor

Initialization Constructor

Structure/Class Constructor

• A constructor is a special method (function) of a class that is called
automatically when an object of the class is being created;

– has exactly the same name as the class;

• for a class Foo its constructor is Foo::Foo();

– can have different parameters:

• the constructor with no parameters is the default constructor: Foo::Foo();

• a constructor with arbitrary parameters is one of the possible initialization
constructors: Foo::Foo(int a);

• there are also a few constructors with special meanings: the copy constructor, the
move constructor;

– has no return value:
• Foo::Foo() { }

• Foo Foo::Foo() { }

• void Foo::Foo() { }

• int Foo::Foo() { }

31

The Member Initializer List

• The member initializer list consists of a comma-separated list of initializers
preceded by a colon.

• Must be used in order to initialize member fields instead of re-assigning
their values:

32

Mind the
neck, boy!

Aaah! This is why he
asks you putting the
opening bracket to a

new line!

What Is the Difference Between the Structures and the Classes?

Structure

• is a custom datatype

• declared with struct
keyword

• all members are public by
default

Class

• is a custom datatype

• declared with class
keyword

• all members are private by
default

33

no. more. difference.

