
Федеральное государственное автономное образовательное
учреждение высшего образования

Национальный исследовательский университет
«Высшая школа экономики»

Факультет компьютерных наук
Департамент программной инженерии

Рабочая программа дисциплины
«Основы и методология программирования»

(преподается на английском языке)

для образовательной программы «Программа двух дипломов НИУ ВШЭ и Лондонского
университета “Прикладной анализ данных”»

направления подготовки 01.03.02 «Прикладная математика и информатика»
уровень бакалавр

Разработчики программы:
Яворский Р. Э., к. ф.-м. н., mailto:ryavorsky@hse.ru
Шершаков С. А., mailto:sshershakov@hse.ru

Одобрена на заседании департамента « » 2017 г.
Руководитель департамента

Утверждена Академическим советом образовательной программы
« » 2018 г., № протокола

Академический руководитель образовательной программы
Вознесенская Т. В.

Настоящая программа не может быть использована другими подразделениями университета
и другими вузами без разрешения подразделения — разработчика программы.

Москва 2018

mailto:ryavorsky@hse.ru
mailto:sshershakov@hse.ru

1 Course Description
Course title: Introduction to Programming
Authors of the program: Rostislav Yavorskiy, PhD (responsible lecturer)

Sergey A. Shershakov,MSc (responsible lecturer)

1.1 General Information and Field of Application
The training course “Introduction to Programming” is offered to students of Bachelor Program “HSE
and University of London Double Degree Programme in Data Science and Business Analytics” (area
code 01.03.02) at the Faculty of Computer Science of the National Research University — Higher
School of Economics (HSE).The course is classified as an compulsory subject (Б.Пр.Б unit / base mod-
ule, Б.Пр – Major disciplines of 2018–2019 academic year working curriculum); it is a two-module
course (semester A quartile 1 and semester B quartile 3). The duration of the course amounts to 144
class periods (both lectures andpractical trainings) divided into 72 contact hours and 72practical train-
ing hours. In addition, 198 academic hours are set aside for self-studying of students. Total number of
course hours is equal to 342 (144 + 198).

The course is divided into two logical parts, which do not basically depend on each other. The first
part is given during semester A quartile 1 under responsibility of Dr. Rostislav Yavorskiy. The duration
of the first part amounts to 56 lecture hours. The second part is given during semester B quartile 3
under responsibility of Lect. Sergey Shershakov. The duration of the first part amounts to 88 lecture
hours.

The syllabus is prepared for teachers responsible for the course (closely related disciplines), teaching
assistants, students enrolled in the course as well as experts and statutory bodies carrying out assigned
or regular accreditations.

1.2 Pre-requisites
1.2.1 Part I

As amatter of fact, good English andMath are usually enough to enter the program, so no preliminary
knowledge in data science or specific programming skills are required, because some of the students
may have zero experience in these.

1.2.2 Part II

Successful completion of the first part of the course is the sole prerequisite for being enrolled for the
second part.

1.3 Abstract
1.3.1 Part I

The first part of the course is intended to be taught during the first module (quartile) of the program,
so it could be treated as introduction into the subject of “Applied data analysis” for students who just
entered the program.

The course comprises 28academic hours of lectures and 28academic hours of seminars. The lec-
tures and seminars are mostly independent. Lectures are focused on general topics of software engi-
neering, data science, software development project management, etc. The seminars are targeted at
teaching basics of Python programming language. Much attention is given to development of learning
skills, that is why the grading formula encourages different kind of self-study, collaboration and team
work.

2

1.3.2 Part II

The second part of the course is intended to be taught during the thirdmodule (quartile) of the program.
It is dedicated to the base features of the C++ programming language and C++ Standard Library (STL).
The part covers all necessary topics that are needed to start developing a modern CLI1-applications in
C++14.

The course comprises 44 academic hours of lectures and 44 academic hours of practical classes.
They are closely inter-related. The lectures are primarily intended to introduce new topics, whereas
the practical classes are intended for solving specific problems by coding programs in C++.

2 Learning Objectives
During the course “Introduction to Programming” the participants will:

• study approaches and toolkits for fast development of modern Python applications;
• perform the following analytical tasks: prepare weekly blog posts in the online community;
stream video to present solution of a coding task in Python; prepare online video presentation
of a Python library;

• take part in a team project on development of online analytical service with Django or Flask;
• study approaches and toolchains for the development of modern C++-applications;
• practice application debugging anddeploymentwith respect to various platforms and toolchains.

3 Learning Outcomes
Students who complete this course successfully will learn or acquire:
(Technical skills)

• basic concepts and methods of software development;
• skills in Python programming to formalize and solve simple development tasks;
• analyze a problem to be implemented in the form of an C++-application;
• design app architecture with respect to problem decomposition and known limitations;
• select the most appropriate toolset for app development;
• create a testbed environment for essential testing of the application.

(Soft skills)
• improve team-working skills with using collaborative working tools;
• improve presentation skills;
• improve skills onwriting reports and technical documentation, including rapidly changing docu-
mentation with using wiki and other specific tools;

• improve self- and peer-review skills.

1CLI — Command-line interface.

3

4 Course Plan

4.1 Part I: semester A quartile 1
4.1.1 Lectures
Topic of the Lecture Acad.hours
1 Overview of the Python Tutorial. Input/Output. Standard functions and data structures. 4
2 Object Oriented Programming. The key principles. HTML DOM (Document Object

Model). Python libraries for DOM processing.
4

3 Client-server architecture. Specifics of front-end and back-end development. 4
4 Basics of software development project management. Work breakdown structure. Team

member responsibility matrix. Persona description. Agile development.
4

5 Introduction to data science. Data exchange formats (CSV, JSON, XML). Architecture of a
typical analytical service. Data cleaning. Exploratory analytics.

4

6 Team projects on development of prototype of online analytical service. 8
Total: 28

4.1.2 Practical Training

Topic of the Seminar Acad.hours
1 Introduction to Python: numbers, strings, lists; input/output; if statement, for statement;

Python interpreter and development environments.
4

2 Exercises on basic data types and operators. 4
3 Exercises on using list data type. 4
4 Exercises on using string data type. 4
5 Exercises on using dict data type. 4
6 Exercises on using the Python standard library. 8

Total: 28

96 academic hours are set aside for self-studying of students.

4.2 Part II: semester B quartile 3

Topic Name Course
Hours,
Total

Audience Hours Self
StudyLectures Practical

Studies
1 Introduction to C++ (Sec. 7.1.1) 9 2 2 5
2 Data types and Objects (Sec. 7.1.2) 13 3 3 7
3 Control flow statements (Sec. 7.1.3) 17 4 4 9
4 Expressions and Operators (Sec. 7.1.4) 9 2 2 5
5 Functions and procedures (Sec. 7.1.5) 13 3 3 7
6 C++ Memory model(Sec. 7.1.6) 17 4 4 9
7 Classes (Sec. 7.1.7) 17 4 4 9
8 Strings (Sec. 7.1.8) 17 4 4 9
9 Standard library (STL) (Secs. 7.1.9, 7.1.10) 26 6 6 14
10 Operator overloading (Sec. 7.1.11) 9 2 2 5
11 Templates (Sec. 7.1.12) 9 2 2 5
12 Exceptions and Move semantics (Secs. 7.1.13, 7.1.14) 13 3 3 7
13 Inheritance (Sec. 7.1.15) 13 3 3 7
14 Object-Oriented Analysis and Design (Sec. 7.1.16) 8 2 2 4
15 Optional: C++ plus Python (Sec. 7.1.17)

Total: 190 44 44 102

4

Notes:
1. Each sequential number above corresponds to a separate theme, whereas a theme can span over

one or more lectures and/or practical classes.

5 Reading List

5.1 Part I
1. The Python Tutorial. url: https://docs.python.org/3/tutorial/index.html.
2. Alexander Petkov. How to explain object-oriented programming concepts to a 6-year-old. url:

https : / / medium . freecodecamp . org / object - oriented - programming - concepts -
21bb035f7260.

3. Introducing JSON. url: https://www.json.org/.
4. W3Schools XML tutorial. url: https://www.w3schools.com/xml/.
5. Cathy O’Neil and Rachel Schutt. Doing data science: Straight talk from the frontline. O’Reilly

Media, Inc., 2013.
6. 12 Principles Behind the Agile Manifesto. url: https://www.agilealliance.org/agile101/.
7. ProjectManagement Institute. AGuide to the ProjectManagement Body of Knowledge (PMBOK).

2004.
8. RikkeDamandTeo Siang. Personas –A Simple Introduction. url: https://www.interaction-

design.org/literature/article/personas-why-and-how-you-should-use-them.

5.2 Part II
Books

1. Stephen Prata. C++ Primer Plus. 6th ed. Addison-Wesley Professional, 2011.
2. Stanley Lippman, Josée Lajoie, and Barbara Moo. C++ Primer. 5th ed. Addison-Wesley Profes-

sional, 2012.
3. Stanley Lippman. Essential C++. 1st ed. Addison-Wesley Professional, 1999.
4. Bruce Eckel. Thinking in C++. 1st ed. Prentice Hall Ptr, 1995.
5. Scott Meyers. Effective Modern C++. O’Reilly Media, 2014.
6. Nicolai Josuttis. The C++ Standard Library — A Tutorial and Reference. Addison Wesley Long-

man, 2012.
7. Jacek Galowicz. C++17 STL Cookbook: Discover the latest enhancements to functional program-

ming and lambda expressions. Packt Publishing, 2017.
8. Bjarne Stroustrup. Programming: Principles and Practice Using C++. 1st ed. Addison-Wesley

Professional, 2008.
9. Matthew Wilson. Extended STL, Volume 1: Collections and Iterators. Addison-Wesley Profes-

sional, 2007.
10. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.

1st ed. Addison-Wesley Professional, 2001.

6 Grading System
The course grade is based on both ongoing assessment and final examination. Every module ends up
with an final exam. The grade for the exam together with a cumulative grade represent a final grade
for the module. The ultimate gradeG for the whole course is calculated as:

G = 0.7 ·min(P1, P2) + 0.3 ·max(P1, P2), (1)

5

https://docs.python.org/3/tutorial/index.html
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://www.json.org/
https://www.w3schools.com/xml/
https://www.agilealliance.org/agile101/
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them

where P1 is a first part final grade, and P2 is a second part final grade.
GradeG is rounded (up or down) to an integer number of points before entering them into records.

P1 and P2 are also rounded in (1). The conversion of rounded 10-point scaled results to 5-point scaled
ones is performed according to Table 1.

Table 1: Correspondence of ten-point to five-point marks

Ten-point scale [10] Five-point scale [5]
1 — unsatisfactory

Unsatisfactory — 2
2 — very bad
3 — bad
4 — satisfactory

Satisfactory — 35 — quite satisfactory
6 — good

Good — 47 — very good
8 — nearly excellent

Excellent — 5
9 — excellent
10 — brilliant

6.1 Part I Grading Details
The final grade of the first part is computed by the following formula:

P1 = 0.2 · E1 + 0.4 · CS + 0.4 · AS = 0.2 · E1 + 0.8 · (0.5 · CS + 0.5 · AS), (2)

where E1 is a grade for the first part exam, which takes place at the end of the quartile 1 (semester A),
CS is a score for coding skills and AS is a score for analytical skills.

Due to HSE rules the cumulative score P1 must be a whole number.
The first part final exam will consist of several coding tasks and open-ended questions.
Coding skills are assessed during seminars of the first part (50%) and the intermediate tests of the

first part (another 50%).
The maximal score for the analytical skills is 10, which could be accumulated from the following

tasks:
• weekly blog posts in the online community (0.5 score points for each),
• streaming video to present solution of a coding task in Python (2 points),
• online video presentation of a Python library (3 points),
• team project on development of online analytical service with Django or Flask (5 points).

6.2 Part II Grading Details
The final grade P2 for the second part is calculated as follows:

P2 = 0.4 · E2 + 0.6 · OA, (3)

where E2 is a grade of the second part exam, which takes place at the end of the quartile 3 (semester
B), OA is an ongoing assessment grade (both 10-point scale). The ongoing assessment OA measures
participant’s performance throughout all classes and involves various types of activities (see Sect. 6.3).

The final exam for the second part as well as the intermediate tests are given in the form of a written
test (paper- or computer-based, subject to further clarification). One (10-point scale) grade is given for
the exam.

6

6.3 Ongoing Assessment
Theongoing assessment grade is accumulated throughout all the classes and is related to a participant’s
activity. An ongoing control structure is individual for every class.

During the classes, there are some activities available for students to be involved in. They include
(but are not limited by) writing code and developing applications, evaluating practical problems, solv-
ing tests, answering questions and so on. Every activity is evaluated and grants some points (RP) to
participants.

As a result of every class, a certain maximum number of RP can be earned (RPmax). RPs are ac-
cumulated during a module and give a resulting grade as maximum 10 points (10-point scale) to OA
only if every class brings a maximum number of points (RPmax) for a given participant.

Finally, some kinds of out-of-class activities can be accounted for as a part of ongoing assessment.
Peer review work, preparing and reporting one of a course-related topics are examples of such activities.

Ongoing activities grades can be significantly decreased (down to 0 points) if a participant does
not attend classes or attends them sporadically even though all other formal requirements for earning
points are met.

6.3.1 Regular tests

Students’ skills in programming are tested using automated testing. This way, a student is assigned
an individual task, prepares it by using a personal computer and, then, submits it by using a special
service, such as Yandex.Contest or a repository-based tool. The specific solution is subject to further
clarification.

The individual home-based task submissions are to be further reassessed through in-class tests or
examinations.

For any two corresponding submissions, one for home work and one for class work, graded as H
and C respectively, the resulting grade R is calculated as follows:

R = 0.8 ·min(H,C) + 0.2 ·max(H,C). (4)

7 Course Content

7.1 Part 2: Programming in C++
7.1.1 Introduction to C++

Introduction to C++. C++ program structure. Statements. Programs and modules. Toolchains and
building C++ Programs.

7.1.2 Data types and Objects

Datatypes and Objects. Primitive, composite and user datatypes. Scope of variables (objects). Con-
stants. Basic input/output. Introduction to streams.

7.1.3 Control flow statements

Control flow statements: conditional (if, switch); loops (while, do..while, for).

7.1.4 Expressions and operations

Expressions. Operations and operators. Operator precedence. Logical and Bitwise operations.

7

7.1.5 Functions and procedures

Procedural decomposition. Functions and procedures. Formal and Actual Parameters of a Function.
Function return value. Function signature. Passing parameters to a function by value and by reference.
Function overloading. Operator overloading.

7.1.6 C++ memory model

Memorymodel of a C++ program. Addresses and pointers. Difference between pointer and reference.
Stack- and heap-memory. Object life-cycle.

7.1.7 Classes

Classes overview. Class members: methods and fields. Access modifiers: public, protected, pri-
vate. Classes vs. structures. The (.) “dot” and (->) “arrow” operators. Constructors. Destructor. Safe
array. Copy constructor. Copy operation. Copy-and-swap idiom. Rule of three.

7.1.8 Strings

Strings in C++. Null-terminated string. std:string class. Unicode supporting. String streams. Ap-
proaches to deal with strings.

7.1.9 Standard library overview

Standard library (STL) overview. Containers and adapters. Algorithms. Iterators. “for-each” loop for
iterating collections/containers. stl::vector<T> and C-style arrays. Dynamic resizing of a vector.

7.1.10 Standard library components

Sequence containers: vector, list, dequeue∗. Associative containers: map, set, unordered_map,
unordered_set. Adapters: stack, priority_queue. Main std algorithms.

7.1.11 Operator overloading

More on operator overloading. Bitwise operations. std::bitset<N> class.

7.1.12 Templates

Templates: classes and functions. Header-only approach. typename and inner types. Templates and
duck-typing. Concepts. std template framework. Lambda functions.

7.1.13 Exceptions

Exceptions. RAII idiom. Smart pointers.

7.1.14 Move semantics

Move semantics. Rvalue reference. Rule of five.

7.1.15 Inheritance

TheThree Pillars of Object-Oriented Programming: Encapsulation, Inheritance, Polymorphism. Single
inheritance. Virtual and pure-virtual methods. Abstract classes and interface classes.

8

7.1.16 Object-Oriented Analysis and Design

Introduction to Object-Oriented Analysis and Design. Class relationships.

7.1.17 C++ plus Python

Optional: binding c++ and python together.

8 Special Equipment and Software Support (if required)
Students are highly reccommended to use their own laptopswith pre-installed and configured software,
if possible. The computers in computer classes are also suitable for performing programming tasks. The
exact set of software needed for the courses will be listed in an associated educational service, such as
LMS or wiki.

References
[1] 12 Principles Behind the Agile Manifesto. url: https://www.agilealliance.org/agile101/.
[2] Andrei Alexandrescu.Modern C++ Design: Generic Programming and Design Patterns Applied.

1st ed. Addison-Wesley Professional, 2001.
[3] RikkeDam and Teo Siang. Personas – A Simple Introduction. url: https://www.interaction-

design.org/literature/article/personas-why-and-how-you-should-use-them.
[4] Bruce Eckel.Thinking in C++. 1st ed. Prentice Hall Ptr, 1995.
[5] Jacek Galowicz. C++17 STL Cookbook: Discover the latest enhancements to functional program-

ming and lambda expressions. Packt Publishing, 2017.
[6] ProjectManagement Institute.AGuide to the ProjectManagement Body of Knowledge (PMBOK).

2004.
[7] Introducing JSON. url: https://www.json.org/.
[8] Nicolai Josuttis.The C++ Standard Library — A Tutorial and Reference. Addison Wesley Long-

man, 2012.
[9] Stanley Lippman. Essential C++. 1st ed. Addison-Wesley Professional, 1999.
[10] Stanley Lippman, Josée Lajoie, and Barbara Moo. C++ Primer. 5th ed. Addison-Wesley Profes-

sional, 2012.
[11] Scott Meyers. Effective Modern C++. O’Reilly Media, 2014.
[12] Cathy O’Neil and Rachel Schutt. Doing data science: Straight talk from the frontline. O’Reilly

Media, Inc., 2013.
[13] Alexander Petkov. How to explain object-oriented programming concepts to a 6-year-old. url:

https : / / medium . freecodecamp . org / object - oriented - programming - concepts -
21bb035f7260.

[14] Stephen Prata. C++ Primer Plus. 6th ed. Addison-Wesley Professional, 2011.
[15] Bjarne Stroustrup. Programming: Principles and Practice Using C++. 1st ed. Addison-Wesley

Professional, 2008.
[16] The Python Tutorial. url: https://docs.python.org/3/tutorial/index.html.
[17] W3Schools XML tutorial. url: https://www.w3schools.com/xml/.

9

https://www.agilealliance.org/agile101/
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
https://www.json.org/
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://docs.python.org/3/tutorial/index.html
https://www.w3schools.com/xml/

[18] Matthew Wilson. Extended STL, Volume 1: Collections and Iterators. Addison-Wesley Profes-
sional, 2007.

Author of the program: Rostislav Yavorskiy

Author of the program: Sergey Shershakov

Ред. 0.1 / 31.08.2018 г.

10

	Course Description
	General Information and Field of Application
	Pre-requisites
	Part I
	Part II

	Abstract
	Part I
	Part II

	Learning Objectives
	Learning Outcomes
	Course Plan
	Part I: semester A quartile 1
	Lectures
	Practical Training

	Part II: semester B quartile 3

	Reading List
	Part I
	Part II

	Grading System
	Part I Grading Details
	Part II Grading Details
	Ongoing Assessment
	Regular tests

	Course Content
	Part 2: Programming in C++
	Introduction to C++
	Data types and Objects
	Control flow statements
	Expressions and operations
	Functions and procedures
	C++ memory model
	Classes
	Strings
	Standard library overview
	Standard library components
	Operator overloading
	Templates
	Exceptions
	Move semantics
	Inheritance
	Object-Oriented Analysis and Design
	C++ plus Python

	Special Equipment and Software Support (if required)

